Diabatic Balance Model for the Equatorial Atmosphere

نویسندگان

  • IAN H. CHAN
  • THEODORE G. SHEPHERD
چکیده

Using an asymptotic expansion, a balancemodel is derived for the shallow-water equations (SWE) on the equatorial b plane that is valid for planetary-scale equatorial dynamics and includes Kelvin waves. In contrast to many theories of tropical dynamics, neither a strict balance between diabatic heating and vertical motion nor a small Froude number is required. Instead, the expansion is based on the smallness of the ratio of meridional to zonal length scales, which can also be interpreted as a separation in time scale. The leading-order model is characterized by a semigeostrophic balance between the zonal wind and meridional pressure gradient, while the meridional wind y vanishes; the model is thus asymptotically nondivergent, and the nonzero correction to y can be found at the next order. Importantly for applications, the diagnostic balance relations are linear for winds when inferring the wind field from mass observations and the winds can be diagnosed without direct observations of diabatic heating. The accuracy of the model is investigated through a set of numerical examples. These examples show that the diagnostic balance relations can remain valid even when the dynamics do not, and the balance dynamics can capture the slow behavior of a rapidly varying solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiannual Cycle in Zonal Wind over the Equatorial Indian Ocean

The semiannual cycle in zonal wind over the equatorial Indian Ocean is investigated by use of ocean– atmospheric reanalyses, and linear ocean–atmospheric models. In observations, the semiannual cycle in zonal wind is dominant on the equator and confined in the planetary boundary layer (PBL). Results from a momentum budget analysis show that momentum advection generated by the cross-equatorial m...

متن کامل

Effects of cloud-radiative heating on atmospheric general circulation model (AGCM) simulations of convectively coupled equatorial waves

[1] This study examines the effects of cloud-radiative heating on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). The strength of cloud-radiative heating is adjusted by modifying the autoconversion rate needed for cloud condensates to grow up to raindrops. The results show that increasing the autoconversion rat...

متن کامل

An Analytical Study of Ozone Feedbacks on Kelvin and Rossby–Gravity Waves: Effects on the QBO

An equatorial beta-plane model of the middle atmosphere is used to analytically examine the effects of radiative cooling and ozone heating on the spatial and temporal evolution of the quasi-biennial oscillation (QBO). Under the assumption that the diabatic heating is weak and the background fields of wind, temperature, and ozone are slowly varying, a perturbation analysis yields expressions des...

متن کامل

A Generalized Energy Balance Climate Model with Parameterized Dynamics and Diabatic Heating

Energy balance models have proven useful in understanding mechanisms and feedbacks in the climate system. An original global energy balance model is presented here. The model is solved numerically for equilibrium climate states defined by zonal average temperature as a function of latitude for both a surface and an atmospheric layer. The effects of radiative, latent, and sensible heating are pa...

متن کامل

A general circulation model ensemble study of the atmospheric circulation of Venus

[1] The response of three numerical model dynamical cores to Venus‐like forcing and friction is described in this paper. Each dynamical core simulates a super‐rotating atmospheric circulation with equatorial winds of 35 ± 10 m/s, maintained by horizontally propagating eddies leaving the equatorial region and inducing a momentum convergence there. We discuss the balance between the mean circulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014